




 
这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。
通过阅读本书,你将掌握以下知识:
RAG的召回和生成模块算法
高级RAG系统的构建技巧
RAG系统的各种训练方法
RAG的范式变迁
零基础搭建RAG系统
高级RAG系统微调与搭建
作者简介:
汪鹏 资深NLP技术专家和AI技术专家,拥有多年NLP落地经验。擅长结合用户场景,针对性地设计图谱、问答、检索、多模态、AIGC等相关的算法和落地方案。在Kaggle获得多枚奖牌,等级master。拥有公众号“NLP前沿”。 谷清水 毕业于清华大学,有国内多家大厂工作经历,7年深度学习项目开发经验。在KDD-CUP等机器学习竞赛中多次获奖,持有多项发明专利。知乎ID:“战士金”。 卞龙鹏 某上市公司资深AI算法工程师,多年互联网一线工作经验,10年机器学习与数据挖掘经验。持多项发明专利,发表多篇SCI文章,主攻机器视觉、模式识别、自然语言处理。
目录:
第1章 RAG与大模型应用 2
第2章 语言模型基础 20
第3章 文本召回模型 58
第4章 RAG核心技术与优化方法 74
第5章 RAG范式演变 121
第6章 RAG系统训练 136
第7章 基于LangChain实现RAG应用 152
第8章 RAG系统构建与微调实战 162
点击下载