



 
大模型在众多领域得到了广泛应用,促进了AI技术的整合和创新。然而,在实际应用过程中,直接将大模型应用于特定行业常常难以达到预期效果。本书详细阐述如何在游戏经营分析场景中利用大模型实现数据体系的建设。
本书分为6个部分,共16章。第1部分主要介绍大模型技术的发展与应用,从大模型的发展现状展开,重点介绍大模型与数据体系的相关知识。第2部分主要介绍大模型下的关键基础设施,涵盖湖仓一体引擎、湖仓的关键技术、实时数据写入和高效数据分析等内容。第3部分主要介绍大模型下的数据资产,围绕数据资产重塑、数据资产标准、数据资产建设、数据资产运营展开。第4部分主要介绍自研领域大模型的技术原理,涵盖领域大模型的基础、需求理解算法、需求匹配算法、需求转译算法等内容。第5部分主要介绍大模型的工程化原理,涉及工程化的基础、技术筹备、建设要点、安全策略等内容。第6部分介绍大模型在游戏领域的应用,通过游戏领域的经营分析案例,系统地阐述如何实现业务需求。
本书适合致力于大模型技术应用的数据工程师阅读,也适合寻求AI自动化编程解决方案的软件开发者阅读,还适合希望利用AI提升业务效率的企业决策者阅读。
作者简介:
张凯,腾讯专家工程师,主要从事游戏的大数据分析工作。具有10多年的互联网从业经验,先后负责游戏安全对抗、反欺诈对抗、游戏大数据应用等项目。曾主编3本畅销图书,荣获异步社区“2023年度影响力作者奖”。 司书强,腾讯资深专家工程师,负责游戏业务的数据工程、数据分析等工作。在大数据技术工程、数据分析、商务智能、企业级数据治理等领域有10年以上的实践积累,主导并落地多个大型企业数据体系建设。 刘岩,腾讯资深专家工程师,前三一重工智能制造研究院院长。目前负责腾讯游戏AI驱动下的数据体系建设工作,曾负责全球“灯塔工厂”建设。在数据驱动业务、业务流程重构、数据智能应用等领域有20年以上的工作经验,主导和落地多个大型企业数字化转型项目。 张昱,腾讯资深工程师,主要从事游戏大模型、大数据应用等工作。具有10年大数据、数仓技术和数据分析领域从业经验,曾先后负责云产品研... 张凯,腾讯专家工程师,主要从事游戏的大数据分析工作。具有10多年的互联网从业经验,先后负责游戏安全对抗、反欺诈对抗、游戏大数据应用等项目。曾主编3本畅销图书,荣获异步社区“2023年度影响力作者奖”。 司书强,腾讯资深专家工程师,负责游戏业务的数据工程、数据分析等工作。在大数据技术工程、数据分析、商务智能、企业级数据治理等领域有10年以上的实践积累,主导并落地多个大型企业数据体系建设。 刘岩,腾讯资深专家工程师,前三一重工智能制造研究院院长。目前负责腾讯游戏AI驱动下的数据体系建设工作,曾负责全球“灯塔工厂”建设。在数据驱动业务、业务流程重构、数据智能应用等领域有20年以上的工作经验,主导和落地多个大型企业数字化转型项目。 张昱,腾讯资深工程师,主要从事游戏大模型、大数据应用等工作。具有10年大数据、数仓技术和数据分析领域从业经验,曾先后负责云产品研发、大数据治理、湖仓一体和大模型应用等项目。 戴诗峰,腾讯资深工程师,主要从事游戏的数据治理规划与架构工作。具有近20年的数据领域工作经验,参与多个领域大数据平台和数据治理的咨询与交付工作,擅长数据资产体系、数据资产持续运营、数据治理标准等方面的规划与设计。 谢思发,腾讯资深工程师,主要从事游戏行业的算法研究工作。具有8年以上的大数据搜索推荐实战经验,曾先后负责游戏用户画像建设、推荐系统建设及游戏知识图谱(游谱)系统的建设与应用。曾发表多篇学术论文和专利,在OGB挑战赛等国际赛事中获得佳绩。 李飞宏,腾讯专家工程师,主要从事游戏的大数据平台研发及治理工作。具有10多年的大数据行业从业经验,曾先后负责游戏大数据分析平台、游戏数据治理平台、游戏大数据应用等项目,主编并参与多个腾讯数据治理标准的编写工作。
目录:
第1章 大模型的发展现状 2
第2章 大模型与数据体系 15
第3章 大模型下的新基建 40
第4章 数据资产重塑 76
第5章 数据资产标准 86
第6章 数据资产建设 97
第7章 数据资产运营 117
第8章 领域大模型的基础 128
第9章 需求理解算法 146
第10章 需求匹配算法 156
第11章 需求转译算法 189
第12章 工程化的基础 206
第13章 工程化的技术筹备 214
第14章 工程化的建设要点 228
第15章 工程化的安全策略 263
第16章 游戏领域的应用案例 274
点击下载