




本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络的优化与应用、EM算法及其应用、集成学习的过拟合现象研究、度量学习及其应用。书中包含简答题、计算题和编程题,涵盖不同难度级别,机器学习初学者可以通过这些习题深入了解和巩固教材的关键概念,对机器学习有一定基础的读者也可以通过习题发现对一些知识点不同角度的解读,为后续机器学习的深入研究打下基础。
本书面向《机器学习》读者以及广大机器学习爱好者,可作为高等院校人工智能、计算机、自动化及相关专业的本科生或研究生的教学辅助书籍,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
推荐序
由叶翰嘉和詹德川两位老师合作的《〈机器学习〉习题参考》(以下简称“本书”)是一本配合本人所撰《机器学习》(清华大学出版社于2016年出版,以下采用读者给予的昵称“西瓜书”)的教学参考书。
西瓜书于2016年出版后即被用作南京大学计算机系本科课程“机器学习导论”的教材(讲授前9章),2018年南京大学成立人工智能学院后,又被用作人工智能学院本硕核心必修课的教材(本科讲授前10章、研究生讲授全书)。八年来在南京大学课堂以西瓜书为教材进行学习的同学已逾3000人,另有海内外五百余家单位以其为教材进行授课。西瓜书中每章通常提供10道习题,有不少同学希望有更多的习题以供练习。
本书的两位作者都是南京大学人工智能学院的优秀青年教师,在机器学习领域有扎实的研究基础,成果斐然。两位都先后三轮担任本人授课的助教,并已开始独立授课,有较为丰富的教学经验。本书是对南京大学教学实践中使用的课程作业的总结和拓展,书中习题试图从不同角度帮助读者更好地掌握和巩固西瓜书中前10章所涉及的主要知识点,并综合考虑习题的难度和广度,尽可能兼顾不同读者的需求.。
希望本书的出版能够辅助读者加深对机器学习的理解,并为教师授课提供有益的补充材料。
——周志华,南京大学副校长,国际人工智能联合会理事会主席、《机器学习》作者
作者简介:
叶翰嘉 南京大学人工智能学院副教授、博士生导师。从事机器学习领域研究工作,入选全国高校计算机专业优秀教师奖励计划,获中国计算机学会优秀博士学位论文奖等荣誉。 詹德川 南京大学人工智能学院教授、博士生导师,南京大学科研院副院长。主要研究方向为机器学习、人工智能,入选全国高校计算机专业优秀教师奖励计划,获江苏省科学技术一等奖等荣誉。
目录:
第1章 绪论2
第2章 模型评估与选择23
第3章 线性模型49
第4章 决策树80
第5章 神经网络106
第6章 支持向量机134
第7章 贝叶斯分类器162
第8章 集成学习191
第9章 聚类225
第10章 降维与度量学习263
第11章 线性模型的优化与复用298
第12章 面向类别不平衡数据的分类326
第13章 神经网络的优化与应用357
第14章 EM算法及其应用387
第15章 集成学习的过拟合现象研究415
第16章 度量学习及其应用438
点击下载